
1

E-Commerce Integration Meta-Framework – General
Methodology (ECIMF-GM) 2

CEN/ISSS/WS-EC/ECIMF 4

Draft, version 0.2 6

July 11, 2001
 8
1. The methodology
 10
The proposed methodology for analysis and modeling of the transformations between
the e-commerce frameworks follows a layered approach. 12

This approach means that in order to analyze the problem domain one has to split it 14
into layers of abstraction, applying top-down technique to classify the entities and
their mutual relationships: 16

• First, to identify the top-level entities and the contexts in which they occur, and 18

how these contexts affect the semantic properties of the concepts,
• Then, to proceed to the next layer in which the interactions between the entities 20

are analyzed.
• Then, to go to the lowest, the most detailed level to analyze the messages and 22

data elements in communication between the entities.
 24
Starting from the top-most level, the contexts in which the interactions occur are
analyzed and collected, and these contexts affect the semantics of the interactions 26
occurring at the lower layers.
 28
The second dimension of the proposed approach conforms to the Meta-Model
Architectures, as described in the MOF standard, introducing the meta-model, model 30
and instance (data) layers.
 32
The example classification layers are presented in the following picture, where the
vertical dimension is the methodology abstraction layers, and the horizontal 34
dimension is the model abstraction layers:
 36

2

Figure 1 ECIMF methodology and the meta-model architecture. 2

In order to navigate through the framework models and concepts, a prototype tool 4
named Conzilla is introduced, which in later stages will be augmented with other
modules (like data format translating software, automatic generation of interfacing 6
state machines, routing and packaging translators, etc).
 8
The project consists of a recommended methodology (named E-Commerce
Integration Modeling Methodology – “ECIMM”), presented in this document, and base 10
tools needed to prepare specific comparisons of concrete frameworks (presented in
the ECIMF-POC document), which in the end should result in clear implementation 12
guidelines for system integrators and software vendors on how to ensure
interoperability and semantic alignment. This generic integration meta-framework will 14
be expressed in the ECIML language, providing mapping and transformation
descriptions/recipes that can be implemented by an ECIML-compliant 16
agents/intermediaries. This ultimately should allow the frameworks to interoperate
without extensive manual alignment by the framework experts. 18

3

Figure 2 The ECIMF concept of frameworks transformation and alignment. 2

The meta-framework definitions/recipes for interoperability are named “MANIFEST”. 4
The language to be used in these definitions will be called E-Commerce Integration
Modeling Language (“ECIML”), and will be based on XML representation of extended 6
UML models, rules and definitions.
 8
The following diagram describes how the ECIMF approach is used in order to align
the two different frameworks: 10

4

Figure 3 The process of modeling and alignment between two e-commerce frameworks. 2

2. The modeling notation 4

The ECIMF project proposes the use of extended UML modeling notation to express 6
relationships between the semantics and models of the e-commerce frameworks.
This E-Commerce Integration Modeling Language (“ECIML”), to be defined as a 8
result of the project, would be a concrete instance of the OMG’s MOF meta-meta-
model, at the same time re-using as many concepts from standard UML as possible. 10
This puts it in the following relationship to the standard modeling approaches:

5

Figure 4 Relationship between the ECIML and other modeling standards. 2

In other words, the ECIML will be yet another profile of UML 1.4. We will build on the
experiences of the projects like pUML (The Precise UML Group), using also the 4
OMG’s standards (e.g. CWM, standard UML 1.4 profiles, UML Profile for EAI and
UML Profile for EDOC) when appropriate, in order to define a suitable meta-model. 6
We will also reuse as much as possible the specialized concepts developed by the
UN/CEFACT Unified Modeling Methodology (UMM), as described in TMWG-8
N090R9.1.
 10
One could use the standard UML for modeling the interoperability concepts, but we
feel that in its current form it is too generic and lacks necessary precision, and though 12
it’s extensible, the way the extensions are specified is often implicit (e.g.
stereotyping). In the ECIML meta-model these concepts would be precisely defined. 14
Some of these issues will be addressed in the next major revision of UML standard
(2.0), at which point we will evaluate the possibility to use that standard as the sole 16
basis for ECIML.
 18
Consequently, one of the goals of this project will be to define a suitable set of
modeling constructs to more adequately address the needs of meta-framework 20
modeling and transformations.
 22
3. MANIFEST recipes
 24
A MANIFEST document consists of a set of interoperability recipes, based on the
transformation model prepared using ECIML notation and then expressed in a 26
serialized (XML) format. The MANIFEST-s will be identified by a unique ID, and
stored in the repository from which an ECIML-compliant agent can retrieve it. The 28
agent, based on the transformations specified in the MANIFEST recipe, will create
necessary processing structures to align the message handling and interactions 30
between the agents belonging to different frameworks. It should also be possible for
ECIML-compliant modeling tools to re-use already existing MANIFEST recipes to 32
adjust the interoperability model to specific needs. It is expected that some publicaly
available repository will store the commonly used templates for inter-framework 34

6

alignment, so that less experienced or knowledgeable users can leverage the
accumulated expertise of framework experts, and by making relatively minor 2
adjustments re-use the templates as their own MANIFEST recipes.
 4
The specifics of the repository need to be further discussed. Initially we suggest
possibility of using either ebXML or UDDI to store the MANIFEST recipes. 6

It is yet to be defined what kind of language will be used to describe the 8
transformations between the models. The following is a short list of the requirements
that need to be satisfied: 10

• Preferably Open Source implementations available
• Highly portable 12
• Well-known: this is needed in order to ease the adoption
• Strongly typed: the transformations need to be precisely defined, and it’s 14

preferred that most logical errors would be discovered during the
parsing/compilation, not at the runtime. 16

• High level (additional tools for manipulation of complex programmatic
structures, database and directory access, etc…) 18

The candidates that we consider at this stage are Java, XSLT and Python. 20

4. Conzilla – the prototype tool for navigating the standards manifold. 22

Conzilla is the name of a software tool that has been in development from the year 24
1998, by the Interactive Learning Environments (ILE) group at the Centre for user-
oriented IT-design (CID) at the Royal Institute of Technology (KTH) in Stockholm, 26
Sweden (http://cid.nada.kth.se/il). Conzilla is the first implementation of a concept
browser, which is a new type of tool for the exploration and presentation of 28
electronically stored information that has been invented by Ambjörn Naeve, a
mathematician and researcher within the ILE group at CID. In contrast to most 30
hyperlinked information systems, like e.g. the ordinary web (WWW), a concept
browser supports a clear separation between context and content, and lets you 32
navigate the different contexts (of a so called knowledge manifold), and view the
content of a given concept within a clearly defined and displayed context. For a more 34
detailed discussion of the ideas behind conceptual browsing see the report by Naeve:
Conceptual Navigation and Multiple Scale Narration in a Knowledge Manifold, which 36
is available in PDF format at http://cid.nada.kth.se/sv/pdf/cid_52.pdf.
 38
The basic design principles for concept browsers can be expressed as follows:
 40
• separate context from content.
• describe each context in terms of a concept map. 42
• assign an appropriate number of components as the content of a concept
 and/or a conceptual relationship. 44
• label the components with a standardized data description (meta-data) scheme.
• filter the components through different aspects. 46
• transform a content component which is a map into a context
 by contextualizing it. 48

http://cid.nada.kth.se/il
http://cid.nada.kth.se/sv/pdf/cid_52.pdf

7

When desiging concept maps it is important to use a conceptual modeling language
that adheres to international standards. At CID, we make use of UML, which has 2
emerged during the past 5 years as “the Esperanto of conceptual modeling”. As for
meta-data we make use of the IMS-IEEE proposed standard for learning objects 4
(http://www.imsproject.org).
 6
Conzilla is being developed as an open source project. See www.conzilla.org for
more information about the Conzilla project. 8

The ECIMF project uses an extension of Conzilla as a prototype tool for browsing 10
and comparing different e-commerce framework models. One of the goals of the
ECIMF project is to extend this tool by necessary backend(s) for producing abstract 12
machine-readable interoperability guides (MANIFEST recipes), expressed in ECIML
language.14

http://www.imsproject.org/
http://www.conzilla.org/

8

5. The Toolkit
 2
The project aims to provide a simple implementation of the E-Commerce Integration
Toolkit (“ECIT”), consisting of the ECIMF Navigator (extended Conzilla) and a basic 4
implementation of ECIML-compliant agent, and make these available on an Open
Source basis. However, in order to fully leverage the ECIMF approach, we expect the 6
software vendors to follow our initiative and provide complete implementations as
proprietary products – still, compatible with the open standard. 8

Figure 5 Example of ECIT (ECIML-compliant agent) facilitating message exchange. 10

9

Annex 1 – Example ECIMF model.
 2
This example presents step by step how a meta-framework recipe for interoperability
could be prepared, between hypothetical e-commerce frameworks Framework1 and 4
Framework2. Please refer also to the Annex 2 for definitions of the concepts
presented in the example frameworks. 6

Note: the diagrams have been prepared using a generally available UML modeling 8
tool. Some of the concepts could not be presented appropriately (e.g. lack of notation
constructs, or wrong constraints applied). 10

First, a formal model of both frameworks needs to be built based on the available 12
models, natural language descriptions and domain expert knowledge of the
frameworks. In some cases, the frameworks already have more or less 14
comprehensive models available (as is the case with e.g. RosettaNet and e-Speak).
These model are then re-structured to match the ECIMF layers. The scope of the 16
model depends on the scope of the integration task at hand, i.e. it doesn’t necessarily
have to be a complete model. However, the modeling and the analysis follow the 18
structured, layered approach:
 20

Figure 6 Modeling the frameworks 22

Then, using the ECIMF Navigator or a similar tool, the framework experts calibrate 24
and align the semantics of the concepts common to both frameworks. In other words,
they try to establish precise correspondence between the concepts, their common, 26
unique and conflicting properties. This knowledge will then drive the integration
efforts on the business process level and the syntax level. 28

Figure 7 The top-most layers of the Framework1 and Framework2 models. 30

Let’s look closer at this example. The figure 8 presents the semantic elements of both
frameworks in a more detailed fashion. We notice several similarities here. They are 32

10

marked in the following pictures using the same colors and stereotypes for the
corresponding concepts (please refer to Annex 2 for more detailed descriptions): 2

Figure 8 Comparing the corresponding semantic elements.

This is an important step that will affect many other modeling decisions during later 4
stages. The ability to find the corresponding concepts is the basic premise for any
successful attempt at interoperability. 6

When using the ECIMF Navigator tool, we could imagine this step to look like the 8
following figure:
 10

Figure 9 The ECIMF Navigator compares the semantic elements of the frameworks. 12

Then the modeling process proceeds to the next layer, where the framework 14
integrator concentrates on the specific business scenarios that need to be integrated.
 16
So, in the first step the framework integrator prepares a formal model of activities for
e.g. Order Management business process for the Framework1. This is presented in 18
the Figure 10. We use here the standard UML Activity Diagram notation, as it has
been found to be flexible enough (see the ECIMF-ProcessModeling document for 20
comparative study of the notations).

11

 2
Figure 10 Framework1 business process of OrderManagement.

 4
Then, using similar approach, the system integrator models the corresponding
OrderManagement process in the Framework2 that leads to the same business 6
consequences as the one in Framework1.
 8
As the following picture shows, that process (or, rather a group of business
processes) is different from the corresponding process in Framework1. The result is 10
presented in Figure 11.
 12

12

Figure 11 Framework2 business processes related to OrderManagement. 2

As the last step on this level of modeling, he proceeds to preparing the model of 4
interactions for the ECIML-compliant agent (mediator). The mediating agent will play
the role of Responding Party to the Requesting Party in the Framework 1, and the 6
role of Requesting Party to the Responding Party in the Framework 2.
 8
Note: in this example, we concern ourselves only with binary collaborations. It is
possible to present multi-party collaborations as series of binary collaborations. 10

In addition to that, the mediator process will use the information elements from the 12
messages, as well as information available from the external resources, in order to fill
in the values in the expected data elements. 14

13

Figure 12 The process specification for ECIMF mediator. 2

14

Since preparing a complete meta-model might prove to be a very complex task, he
concentrates on specific business scenarios that are required to interoperate. 2

This step can be illustrated with the following figure, presenting the ECIMF Navigator 4
tool used to define the process mediator.

 6
Figure 13 Using ECIMF Navigator to define the process mediator.

The framework experts and integrators may use several strategies to approach this 8
task (top-down analysis, best practices, already existing recipes, heuristics),
gradually narrowing down the gap between the two frameworks. Finally, they end up 10
with a sufficient (parameterized) model of meaningful interactions between the two
frameworks for the given business scenarios. 12

As the final step, the system integrator prepares mappings between syntax layers, 14
i.e. mapping and transformations needed between data elements and message
formats, packaging specifications and transport protocol configurations. Since at this 16
stage he knows how both parties understand these messages and elements, and
when they expect to receive or send specific data, it makes the task much easier. 18

So, the diagram presented in Figure 13 can summarize the whole process. 20

15

Figure 14 ECIMF Navigator aligns all layers of the frameworks. 2

This model provides an abstract recipe for interoperability between Framework1 and
Framework2 (within the given scope). The model can then be processed by a 4
ManifestFactory component that will prepare a machine-readable abstract definition
(F1F2Manifest), defining how to construct the adaptation implementation. 6

The example syntax of the MANIFEST document could look like the sample below: 8

<?xml version=’1.0’?>10
<Manifest>

<Process name=’Procurement’>12
<Framework id=’A’ name=’WidgetsLtd’>

<BusinessProcessDefinition>14
... (here it follows)...

</BusinessProcessDefinition>16
</Framework>
<Framework id=’B’ name=’ebXML’>18

<BusinessProcessDefinition location=’uddi:...’/>
</Framework>20
<MappingRules>

<SemanticMapping>22

16

<MapElement from=’A’ to=’B’>
<Element in=’A’>Actor<Element>2
<Element in=’B’>Party</Element>
<Element in=’B’>User</Element>4
<Common> ... </Common>
<Unique in=’A’> ... </Unique>6
<Unique in=’B’> ... </Unique>
<Conflict> ... </Conflict>8

</MapElement>
<MapElement from=’A’ to=’B’>10

<Element in=’A’>BusinesEntity<Element>
<Element in=’B’>Party</Element>12
<Element in=’B’>User</Element>
<Common> ... </Common>14
<Unique in=’A’> ... </Unique>
<Unique in=’B’> ... </Unique>16
<Conflict> ... </Conflict>

</MapElement>18
</SemanticMapping>
<ProcessMediating> ... </ProcessMediating>20
<SyntaxMapping> ... </SyntaxMapping>

</MappingRules>22
</Process>

</Manifest>24

 26
In the next step, as presented previously in the Figure 5, the ECIML-compliant agent
receives the F1F2Manifest and instantiates the necessary adapters. This may involve 28
setting up processing pipelines for messages, creating state machines to keep track
of complex interactions, creating translation maps for message elements, reading 30
parameters provided by the communicating parties, etc. This reference environment
for execution of the MANIFEST recipe can be provided as a commercial product. 32

Finally, at this stage it is possible for the parties to successfully establish business 34
interaction, even though they use different e-commerce frameworks to express their
activities.36

17

Annex 2 – Semantics of the example frameworks
 2
NOTE: Both frameworks are purely hypothetical. The authors used in preparation of the
example the concepts present in RosettaNet and e-Speak, so that the Framework 1 4
resembles simplified RosettaNet model, and the Framework 2 resembles simplified e-Speak
model. However, the example frameworks are by no means representative for the real 6
models, and in fact conflict with them. This example will be replaced at later stage with the
real models of business processes from two selected frameworks. Meanwhile, readers are 8
encouraged to refer to the original documentation for more details: RNIF and SFS2.0
specifications respectively. 10

1. Models of the central semantic concepts 12

Framework 1 Semantics

Framework 2 Semantics

 14
2. Semantic correspondence
 16
Framework 1 Common Framework 2

An entity involved in data
exchange, either as an
initiator, or a responder. The
same entity may play each
role in the course of related
data exchanges.

Agent:
Abstract entity involved in message
exchange, either as an initiator, or a
responder. The same Agent may
play each role in the course of a
business process.
Specialization:
• BusinessEntity: human or

organizational actor involved in
the business process

• ServiceEntity: application-
level service end-point involved in
the message exchange

F1 unique: see specialization
F2 unique: see identification

Party:
Concrete entity involved in
document exchange, either as an
initiator, or a responder. The same
Party may play each role in the
course of a conversation.

Identification:
Party always represents human or
organizational actor, playing
specified role in the conversation. It
is identified by a set of ID-s, related
to Account, User, and network
service end-point identifiers.

Message:
An XML instance conforming to
specific schema, consisting of
service-related information (needed
for transport, packaging and
routing), plus optionally the
business data payload.

An XML document instance
conforming to specific
schema. The document
contains references to the
entities involved in the data
exchange. Documents always
contain the business payload
data.

Document:
A business-related structured data,
expressed as XML instance
conforming to specific schema.

Documents are sent and received
by Parties. Exactly two Party ID-s
uniquely identify the business

18

Framework 1 Common Framework 2
Messages are sent and received by
ServiceAgents, and contain the
ServiceEntity identification as well
as the BusinessEntity identification.
Messages can be sent to multiple
recipients.

Messages can be exchanged using
any MIME-compatible protocol
(SMTP and HTTP).

F1 unique: message may
contain both transport-level
information and business
level, or just the former. It may
be sent to multiple recipients.
F2 unique: ability to use MS-
MQ binary format

actors as well as the service end-
points.

Documents are packaged into a
transport-specific envelope (e.g.
MIME for SMTP and HTTP, binary
for MS-MessageQueueing).

Orchestration of data
exchange is structured into
request/response dialogs,
which result from processing
activities and state changes in
entities.

BusinessProcess:
Business process consists of
several ProcessStates that specify
the request (message), which
caused entering this state, and the
specification for events (messages)
to transition to the next state. Each
state is implicitly related to
processing of the request message,
and sending of 0, 1 or 2 response
message(s).

Business process may involve
multiple agents.

F1 unique: both multiple and
binary collaborations.
Business process is explicitly
stateful.
F2 unique: only binary
collaborations. Conversation
is stateless. Parties keep
implicit state (not in the scope
of Conversation specification),
and its violation results in
specific documents being
sent.

Conversation:
Conversation contains a
specification of states, transitions
and activities related to the
documents being exchanged by
parties.

Conversations are always specified
as interactions between exactly two
parties. Multiple collaborations are
expressed as series of binary
collaborations.

Document exchanges form
request/reply dialogs, always with 1
request resulting in 1 reply
document.

 2

